Negative heat capacities and first order phase transitions
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Nuclei have long been associated with liquids,
as testified by the success of the liquid drop
model. The surface energy introduces the sim-
plest correction to the bulk, leading to a model
of 1% accuracy. A similar approach may hold
for other kinds of clusters for which the surface
energy is the main correction to bulk properties.

The equilibrium between a liquid and its vapor
is described by the Clapeyron Equation dp/dT =
AH,,/AV,T, pand T are the pressure and tem-
perature, AH,, is the molar enthalpy of vapor-
ization and AV, is the difference of the molar
volumes of vapor, V¥, and liquid, V,!. Special-
ization to the case of a drop of radius r, de-
scribed readily in the thermodynamic limit [1],
is achieved by modifying the enthalpy to account
for the surface energy [2]
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AH? is the bulk molar enthalpy, S! and V! are
the surface and volume of the drop and ¢, is the
surface energy coefficient.
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Figure 1: (a) Saturated vapor pressure as a func-
tion of T'. (b) Isobaric caloric curve: dashed
(solid) lines represent bulk (drop) behavior.
H' = H(AH, [3¢V, ) (47 V).

Neglecting V! compared to V!, considering
the vapor ideal (V2 = T'/p) and assuming AH,,

constant we integrate the Clapeyron Equation,
p = poexp[—(AH /T) + 3¢,V /rT)]. (2)

This contains all thermodynamical information
needed to characterize the phase coexistence of
the liquid drop of with its vapor. Fig. 1a gives a
map of p' = p'(T',7") (p' = p/po, T' = T/AH?,
v = rAH? /3¢,V!). The salient feature is the
rise of p with decreasing r. For any r, Eq. (2)
describes the equilibrium between the drop and
its vapor; it is the phase diagram of the drop
where a phase is defined by r.

To operate at constant pressure pg, the drop is
enclosed in a deformable container and an exter-
nal pressure pg is applied. As the drop is heated
T increases via AH = CZI)AT , Czl) is the liquid’s
heat capacity and is nearly constant. When T
reaches Ty and p = pg, the vapor first appears
and expands against the container. The heat of
vaporization is absorbed at a rate H,,(rg) and as
the drop evaporates, r decreases from its initial
value r{. At constant T, p would rise, but at
constant p, 1" decreases (Fig. 1a) as the system
absorbs its heat of vaporization, thus,
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After the drop has fully evaporated, the vapor’s
temperature increases via AH = CJAT, O] is
the vapor’s heat capacity at constant pressure.
The caloric curve (Eq. (3), Fig. 1b) has a decreas-
ing branch associated with the phase transition
along which the heat capacity will be negative!
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